Colloids: phase behaviour and self-assembly - Problems Day 1

Exercise 1: Colloids in external fields

Given that the barometric distribution of colloids as a function of height is described by the Boltzmann distribution

$$\rho = \rho_0 e^{-h/l_g}$$

with

$$l_g = \frac{kT}{m_h g}$$

Where ρ is the particle density is the particle density at a height h above a reference level with ρ_0 . Here $m_b = m - m'$ is the buoyant mass, with m' the mass of the fluid displaced by a particle of mass m.

a) Show that for colloidal particles dispersed in a liquid, the equilibrium number of particles, *N*, is given by:

$$N = N_0 \exp \left[-\frac{(m - m')g(h - h_0)}{k_h T} \right]$$

Where N_0 is the number of particles at height h_0 .

- b) In a tube of height 10 cm spherical colloids with a radius R = 10 nm are dispersed in water (ρ_w = 1.0 g cm⁻³). The particles have a density of ρ_p = 1.2 g cm⁻³. What is the ratio between the particle concentration at the top h = 10 cm and the bottom h₀ = 0 cm, after equilibrium has established. Assume the temperature is T = 20 °C.
- c) Compute l_g for particles with R = 90 nm using the same densities as above and assess whether the particles will settle in a sample cell of height 10 cm, 1 cm and 100 um.
- d) Svedverg (1928) gives the following table for the sedimentation equilibrium of a gold sol under gravity.

Height (um)	Number of particles	Height (um)	Number of particles
0	889	600	217
100	692	700	185
200	572	800	152
300	426	900	125
400	357	1000	108
500	253	1100	78

Assume the particles have a radius R = 21 nm and density $\rho_p = 19.3$ g cm⁻³ and the temperature is T = 20 °C. Estimate the Boltzmann constant, k_b , from the equation derived in (a) and then calculate Avogadro's number, N_A , assuming R = 8.31 J K⁻¹ mol⁻¹.

e) Repeat the calculation with a radius of 22 nm and note how sensitive the answer is to this variable.