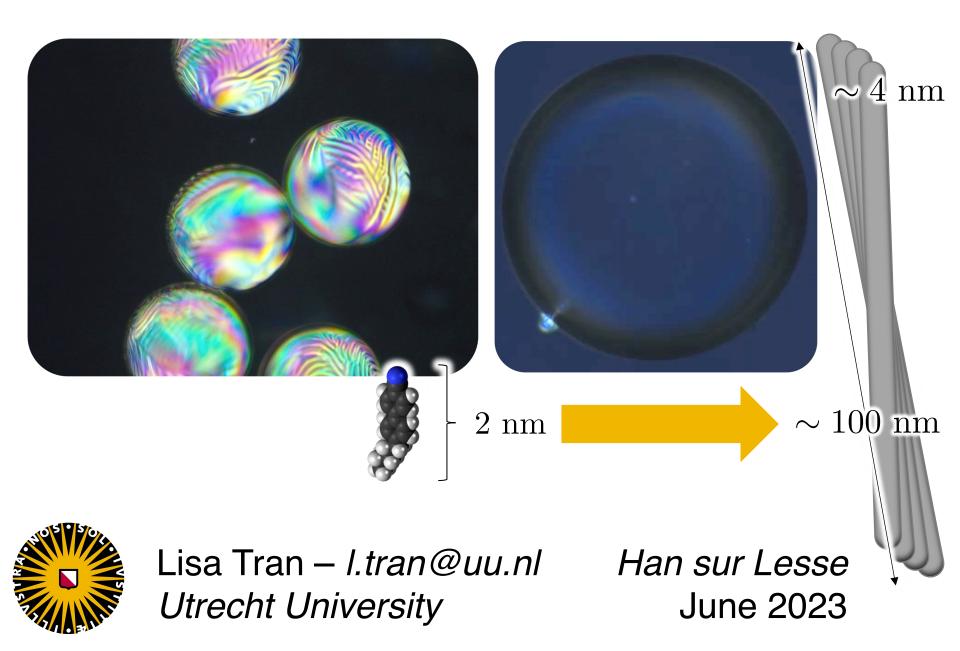
Liquid Crystals



Liquid crystals

Day 1: Displays and droplets

Optical properties

Order: elasticity & defects

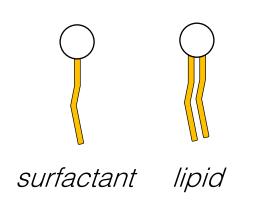
LCDs

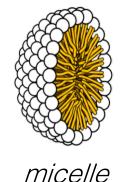
Research highlights

Day 2: Colloidal liquid crystals

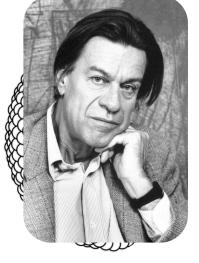
Hard rods - Zwanzig model (2D)
Onsager theory & other interactions
Colloidal liquid crystals in biology
Research highlights

Soft Matter Context





cell membrane



liposome

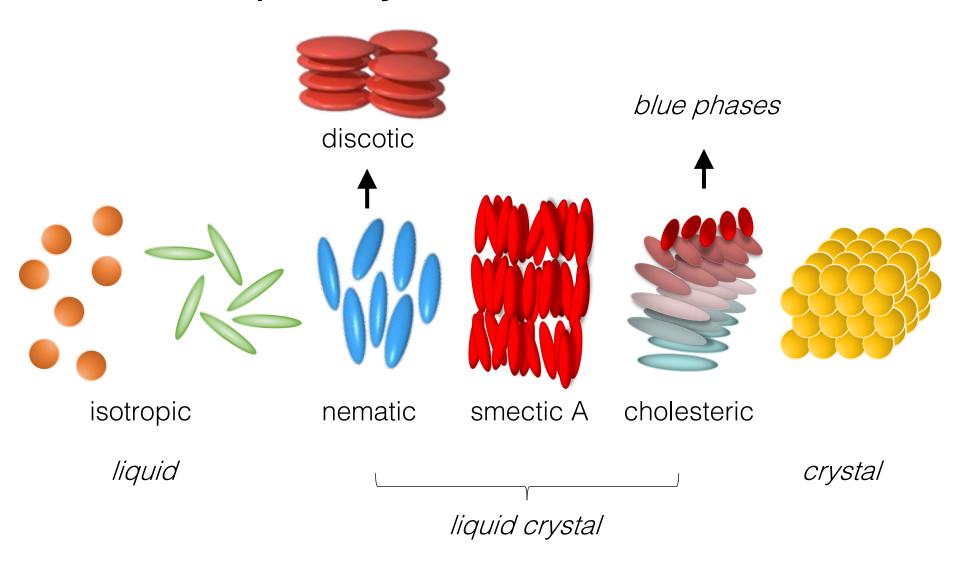
polymers, DNA

Complex fluids

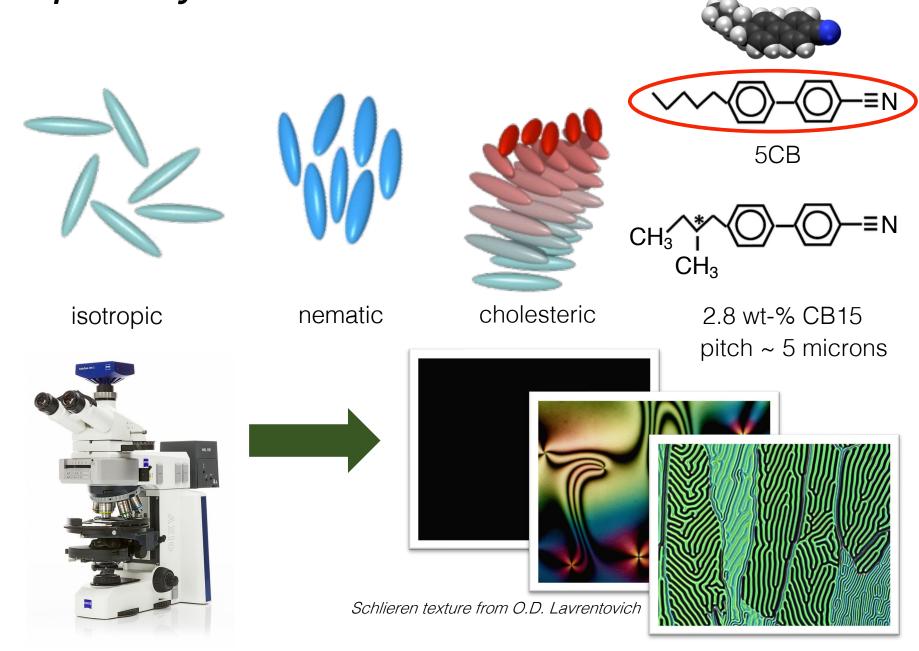
Liquid crystals

Self-assembly

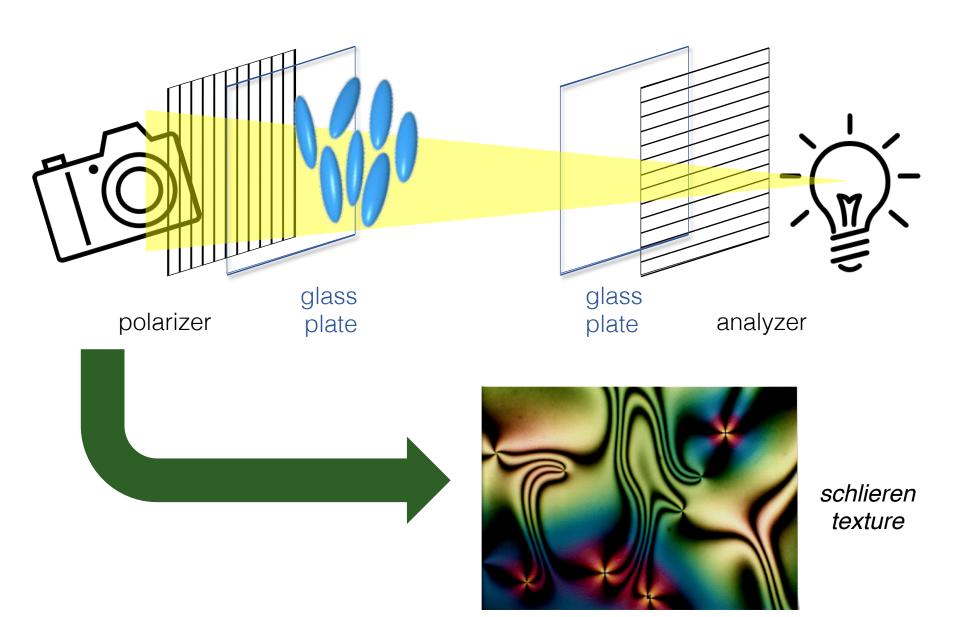
What are liquid crystals?



Liquid crystals – small molecule



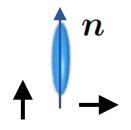
Liquid crystal optics



Liquid crystal optics

Dielectric tensor

dielectric anisotropy

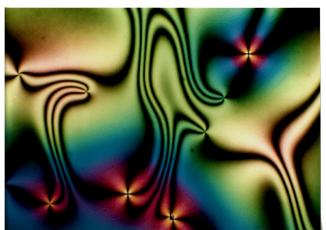


$$\varepsilon_{ij} = \frac{\operatorname{Tr} \varepsilon}{d} \delta_{ij} + \Delta \varepsilon Q_{ij}$$

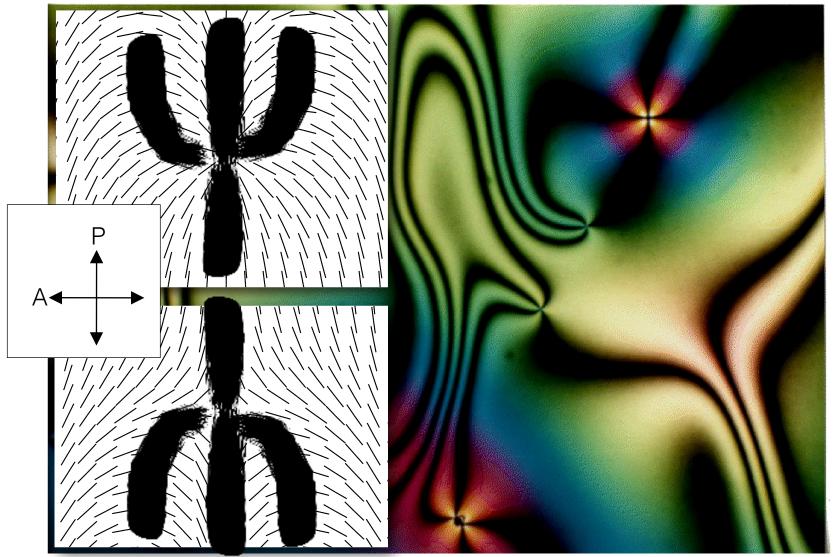
= dielectric constant

$$\Delta \varepsilon = \varepsilon_{\parallel} - \varepsilon_{\perp}$$

dielectric anisotropy tensor symmetric, traceless



Schlieren texture – construct director field



Schlieren textures courtesy of O.D. Lavrentovich: http://www.nsf.gov/news/mmg/mmg_disp.jsp?med_id=59511 and I. Dierking: **Textures of Liquid Crystals**, John Wiley & Sons (2003) LC director field schematic courtesy of R.D. Kamien

Liquid crystal optics

S = f - (1 - f)

Dielectric anisotropy from macroscopic order parameter

er
$$lack f$$

$$= \# \ molecules$$

$$a ligned \ a long \ m{n}$$

$$f = 1/2(1+S)$$

$$1-f = 1/2(1-S)$$

$$arepsilon_{ij} = rac{{
m Tr}\,oldsymbol{arepsilon}}{d}\delta_{ij} + \Deltaarepsilon Q_{ij}$$
 aligned along $oldsymbol{n}$ $f = 1/2(1+S)$

$$arepsilon_{ij}^{along} = arepsilon_{\parallel} n_{i} n_{j} + arepsilon_{\perp} (\delta_{ij} - n_{i} n_{j})$$

$$= \frac{arepsilon_{\parallel} + arepsilon_{\perp}}{2} \delta_{ij} + \Delta arepsilon (n_{i} n_{j} - \frac{1}{2} \delta_{ij})$$

$$= \frac{\varepsilon_{\parallel} + arepsilon_{\perp}}{2} \delta_{ij} + \Delta \varepsilon (n_{i} n_{j} - \frac{1}{2} \delta_{ij})$$

$$= \frac{diagonal}{2} traceless$$

$$\varepsilon_{ij}^{perp} = \frac{\varepsilon_{\parallel} + \varepsilon_{\perp}}{2} \delta_{ij} - \Delta \varepsilon (n_i n_j - \frac{1}{2} \delta_{ij})$$

Liquid crystal optics

S = f - (1 - f)

Dielectric anisotropy from macroscopic order parameter

lacktriangle= # molecules
aligned along $m{n}$

$$f = \frac{1}{2}(1+S)$$
$$1 - f = \frac{1}{2}(1-S)$$

$$\varepsilon = f\varepsilon^{along} + (1 - f)\varepsilon^{perp} \qquad \blacktriangleleft$$

$$\varepsilon_{ij} = \frac{\varepsilon_{\parallel} + \varepsilon_{\perp}}{2} \delta_{ij} + S \Delta \varepsilon (n_i n_j - \frac{1}{2} \delta_{ij})$$

compare to before...

$$\varepsilon_{ij} = \frac{\operatorname{Tr} \varepsilon}{d} \delta_{ij} + \Delta \varepsilon Q_{ij}$$

$$Q_{ij} = S(n_i n_j - \frac{1}{2}\delta_{ij})$$

Maier-Saupe theory

$$Q_{ij} = S(n_i n_j - \frac{1}{2}\delta_{ij})$$

Determining the microscopic order parameter

direction of the $\, lpha^{
m th} \,$ molecule denoted by $\, oldsymbol{
u}^{lpha} \,$

total # of molecules

$$Q_{ij} = \frac{1}{N} \sum_{\alpha=1}^{N} \left[\nu_i^{\alpha} \nu_j^{\alpha} - \frac{1}{d} \delta_{ij} \right]$$
 system dimension

equate above two, after some manipulation:

$$S\left(1-\frac{1}{d}\right) = \langle (\mathbf{n}\cdot\boldsymbol{\nu})^2\rangle - \frac{1}{d}$$

$$p^{\alpha} \quad \text{overall average direction}$$

$$molecular direction \quad \mathbf{n}\cdot\boldsymbol{\nu}^{\alpha} = \cos\theta^{\alpha}$$

$$S = \frac{d}{d-1}\langle\cos^2\theta\rangle - \frac{1}{d-1}$$

W. Maier and A. Saupe, "Eine einfache molekulare theorie des nematischen kristallinflüssigen zustandes," Zeitschrift für Naturforschung, 13A:564–566 (1958)

Maier-Saupe theory

microscopic scalar order parameter

$$S = \frac{d}{d-1} \langle \cos^2 \theta \rangle - \frac{1}{d-1}$$

$$S_{2D} = \langle 2\cos^2\theta - 1 \rangle$$

$$S_{3D} = \langle \frac{3}{2} \cos^2 \theta - \frac{1}{2} \rangle$$

Essential for determining phase transitions and for building elastic free energy

Energetic cost to pointing away from $m{n}$

Can be written in gradients of $\,Q\,$ or of $\,n\,$

Rotational invariants of $\partial_i Q_{ik}$

$$\partial_i Q_{jk} \partial_i Q_{jk}, \qquad \partial_i Q_{ik} \partial_j Q_{jk},$$

$$\partial_i Q_{ik} \partial_j Q_{jk}$$
,

$$\partial_i Q_{jk} \partial_j Q_{ik}$$

Plug in
$$Q_{ij} = S \left[n_i n_j - \delta_{ij} / 3 \right]$$

$$\partial_i Q_{jk} \partial_i Q_{jk} = S^2 \left(n_j \partial_i n_k + n_k \partial_i n_j \right) \left(n_j \partial_i n_k + n_k \partial_i n_j \right) = 2S^2 \partial_i n_k \partial_i n_k$$

$$\partial_i Q_{ik} \partial_j Q_{jk} = S^2 \left[(\partial_i n_i)^2 + ([n_i \partial_i] n_k)^2 \right]$$

$$\partial_i Q_{jk} \partial_j Q_{ik} = S^2 \left[\left(\left[n_i \partial_i \right] n_k \right)^2 + \partial_i n_j \partial_j n_i \right]$$

Energetic cost to pointing away from $m{n}$

A few useful identities to help write into vector notation...

$$(\nabla \times \boldsymbol{n})^{2} = \epsilon_{ijk}\partial_{j}n_{k}\epsilon_{ilm}\partial_{l}n_{m}$$

$$= \partial_{i}n_{j}\partial_{i}n_{j} - \partial_{i}n_{j}\partial_{j}n_{i}$$

$$= \partial_{i}n_{j}\partial_{i}n_{j} - \partial_{i}\left[n_{j}\partial_{j}n_{i} - n_{i}\partial_{j}n_{j}\right] - (\partial_{i}n_{i})^{2}$$

$$\boldsymbol{n} \times [\nabla \times \boldsymbol{n}] = \frac{1}{2}\nabla \boldsymbol{n}^{2} - (\boldsymbol{n} \cdot \nabla) \boldsymbol{n}$$

Plug in
$$Q_{ij} = S \left[n_i n_j - \delta_{ij} / 3 \right]$$

$$\partial_{i}Q_{jk}\partial_{i}Q_{jk} = S^{2} (n_{j}\partial_{i}n_{k} + n_{k}\partial_{i}n_{j}) (n_{j}\partial_{i}n_{k} + n_{k}\partial_{i}n_{j}) = 2S^{2}\partial_{i}n_{k}\partial_{i}n_{k}$$

$$\partial_{i}Q_{ik}\partial_{j}Q_{jk} = S^{2} \left[(\partial_{i}n_{i})^{2} + ([n_{i}\partial_{i}]n_{k})^{2} \right]$$

$$\partial_{i}Q_{jk}\partial_{j}Q_{ik} = S^{2} \left[([n_{i}\partial_{i}]n_{k})^{2} + \partial_{i}n_{j}\partial_{j}n_{i} \right]$$

Putting it all together:

$$\partial_{i}Q_{jk}\partial_{i}Q_{jk} = 2S^{2}\left\{ (\nabla \cdot \boldsymbol{n})^{2} + (\nabla \times \boldsymbol{n})^{2} + \nabla \cdot [(\boldsymbol{n} \cdot \nabla) \, \boldsymbol{n} - \boldsymbol{n} \nabla \cdot \boldsymbol{n}] \right\}$$

$$\partial_{i}Q_{ik}\partial_{j}Q_{jk} = S^{2}\left\{ (\nabla \cdot \boldsymbol{n})^{2} + [\boldsymbol{n} \times (\nabla \times \boldsymbol{n})]^{2} \right\}$$

$$\partial_{i}Q_{jk}\partial_{j}Q_{ik} = \partial_{i}Q_{ik}\partial_{j}Q_{jk} - S^{2}\nabla \cdot [(\boldsymbol{n} \cdot \nabla) \, \boldsymbol{n} - \boldsymbol{n} \nabla \cdot \boldsymbol{n}]$$

- total derivative, integrates to the surface
- called the saddle-splay
- will not discuss in detail today

$$F = \int d\mathbf{r} \left\{ k_1 \partial_i Q_{jk} \partial_i Q_{jk} + k_2 \partial_i Q_{ik} \partial_j Q_{jk} \right\}$$

$$F = \int_{V} d\mathbf{r} \left\{ \frac{1}{2} K_{1} \left(\nabla \cdot \mathbf{n} \right)^{2} + \frac{1}{2} K_{2} \left[\mathbf{n} \cdot \left(\nabla \times \mathbf{n} \right) \right]^{2} + \frac{1}{2} K_{3} \left[\mathbf{n} \times \left(\nabla \times \mathbf{n} \right) \right]^{2} \right\}$$

$$+ K_{24} \int_{\partial V} d\mathbf{A} \cdot \left[\left(\mathbf{n} \cdot \nabla \right) \mathbf{n} - \mathbf{n} \nabla \cdot \mathbf{n} \right]$$

Putting it all together – Frank Free Energy

$$F = \int_{V} d\boldsymbol{r} \left\{ \frac{1}{2} K_{1} \left(\nabla \cdot \boldsymbol{n} \right)^{2} + \frac{1}{2} K_{2} \left[\boldsymbol{n} \cdot \left(\nabla \times \boldsymbol{n} \right) \right]^{2} + \frac{1}{2} K_{3} \left[\boldsymbol{n} \times \left(\nabla \times \boldsymbol{n} \right) \right]^{2} \right\} + K_{24} \int_{\partial V} d\boldsymbol{A} \cdot \left[\left(\boldsymbol{n} \cdot \nabla \right) \boldsymbol{n} - \boldsymbol{n} \nabla \cdot \boldsymbol{n} \right]$$

$$saddle-splay$$

additional term for cholesteric for helical ground state

$$q_0 = rac{2\pi}{p}$$
 where p is the pitch, which measures how much the cholesteric twists

However, when deformation is very large, discontinuities in the director field will be introduced, called <u>defects</u>.

Splay deformations

Note: squaring keeps that $n \rightarrow -n$ but for the splay vector to have this symmetry, you have to write it as:

$$oldsymbol{s} = oldsymbol{n}
abla \cdot oldsymbol{n}$$

Important for the splay flexoelectric effect! (triangle particles)

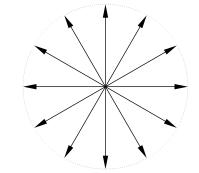
$$F = \int_{V} d\boldsymbol{r} \left\{ \frac{1}{2} K_{1} \left(\nabla \cdot \boldsymbol{n} \right)^{2} + \frac{1}{2} K_{2} \left[\boldsymbol{n} \cdot (\nabla \times \boldsymbol{n}) \right]^{2} + \frac{1}{2} K_{3} \left[\boldsymbol{n} \times (\nabla \times \boldsymbol{n}) \right]^{2} \right\}$$

$$+ K_{24} \int_{\partial V} d\mathbf{A} \cdot [(\mathbf{n} \cdot \nabla) \, \mathbf{n} - \mathbf{n} \nabla \cdot \mathbf{n}]$$

$$n=rac{r}{|r|}$$

$$abla \cdot oldsymbol{n} = rac{2}{|oldsymbol{r}|}$$

2D splay



Both are positive contributions!

$$oldsymbol{n} = rac{[x,0,z]}{\sqrt{x^2 + z^2}} \qquad \quad
abla \cdot oldsymbol{n} = rac{1}{\sqrt{x^2 + z^2}}$$

Bend deformations

From vector identities for unit vectors:
$$\mathbf{n} \times (\nabla \times \mathbf{n}) = -(\mathbf{n} \cdot \nabla)\mathbf{n}$$

rate of change of the director, along the direction of the director

$$F = \int_{V} d\boldsymbol{r} \left\{ \frac{1}{2} K_{1} \left(\nabla \cdot \boldsymbol{n} \right)^{2} + \frac{1}{2} K_{2} \left[\boldsymbol{n} \cdot \left(\nabla \times \boldsymbol{n} \right) \right]^{2} + \frac{1}{2} K_{3} \left[\boldsymbol{n} \times \left(\nabla \times \boldsymbol{n} \right) \right]^{2} \right\}$$

$$+ K_{24} \int_{\partial V} d\boldsymbol{A} \cdot \left[\left(\boldsymbol{n} \cdot \nabla \right) \boldsymbol{n} - \boldsymbol{n} \nabla \cdot \boldsymbol{n} \right]$$

$$n = \frac{[-z, 0, x]}{\sqrt{x^2 + z^2}}$$

bend vector points radially with magnitude 1/r

$${m n} \times (\nabla \times {m n}) = {m n} \times rac{[0,-1,0]}{\sqrt{x^2+z^2}} = rac{1}{\sqrt{x^2+z^2}} rac{[x,0,z]}{\sqrt{x^2+z^2}}$$

Important for the bend flexoelectric effect! (banana particles)

measures curvature of lines tangent to $m{n}$

Twist deformations

Twist is necessarily 3D!

$$\boldsymbol{n} = [\cos qz, \sin qz, 0]$$

$$F = \int_{V} d\mathbf{r} \left\{ \frac{1}{2} K_{1} (\nabla \cdot \mathbf{n})^{2} + \frac{1}{2} K_{2} [\mathbf{n} \cdot (\nabla \times \mathbf{n})]^{2} + \frac{1}{2} K_{3} [\mathbf{n} \times (\nabla \times \mathbf{n})]^{2} \right\}$$

$$+ K_{24} \int_{\partial V} d\mathbf{A} \cdot [(\mathbf{n} \cdot \nabla) \mathbf{n} - \mathbf{n} \nabla \cdot \mathbf{n}]$$

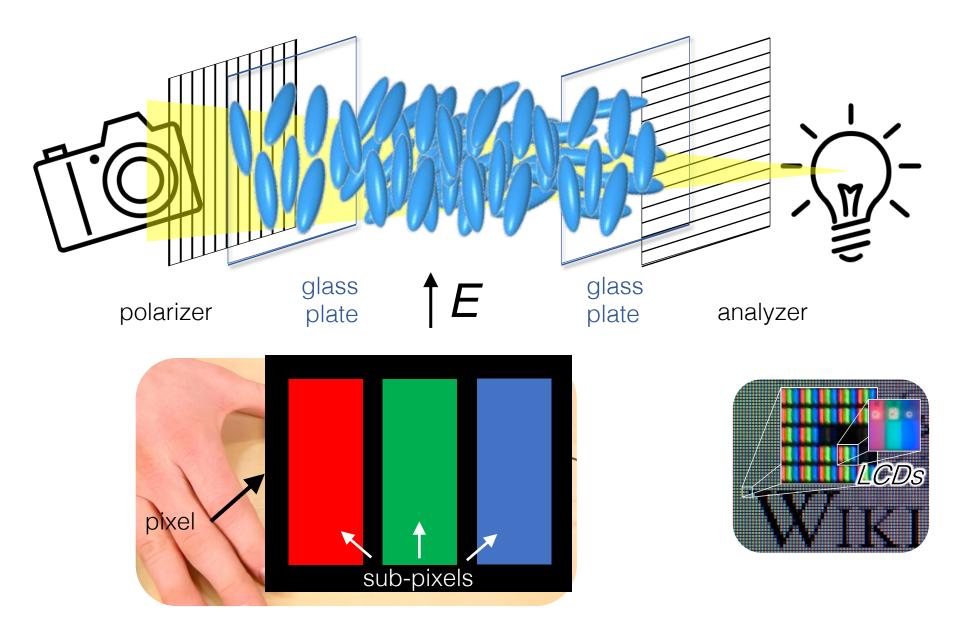
Note that this texture is pure twist! Both splay and bend are zero.

$$\nabla \times \boldsymbol{n} = -q\boldsymbol{n}$$

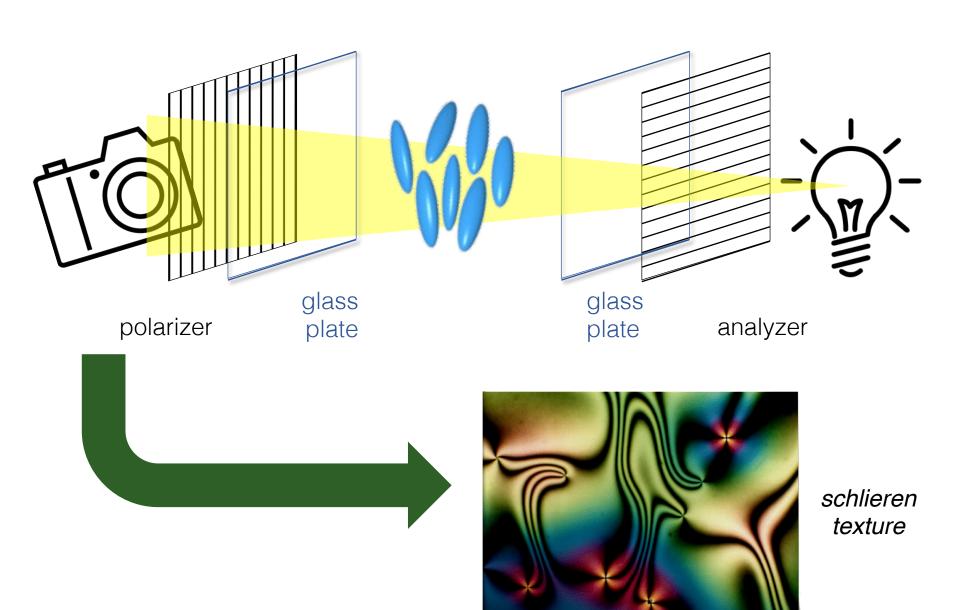
$$\nabla \cdot \boldsymbol{n} = 0$$

$$\boldsymbol{n} \times (\nabla \times \boldsymbol{n}) = 0$$

The twisted nematic display

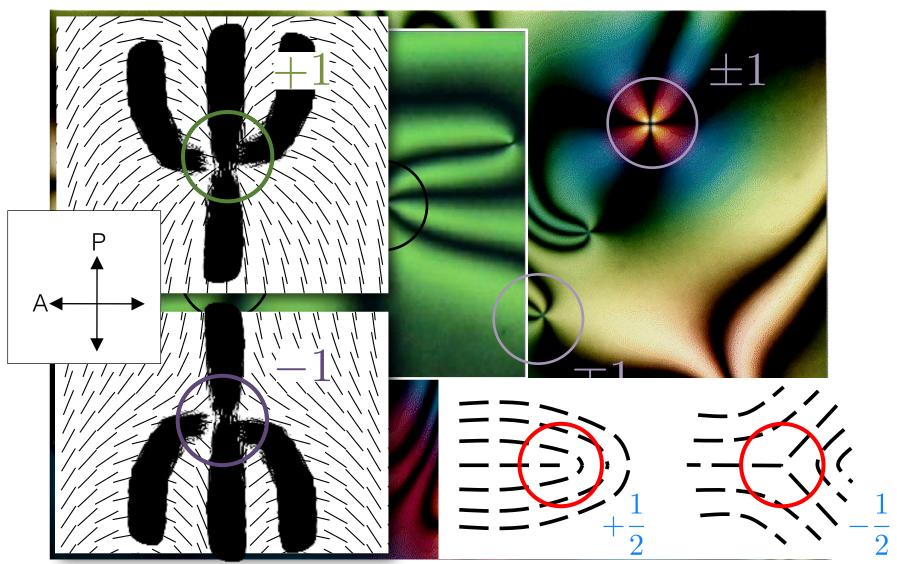


Liquid crystal defects



Schlieren texture - defects

$$w = \frac{1}{2\pi} \int_0^{2\pi} d\phi \frac{df}{d\phi}$$



Schlieren textures courtesy of O.D. Lavrentovich: http://www.nsf.gov/news/mmg/mmg_disp.jsp?med_id=59511 and I. Dierking: **Textures of Liquid Crystals**, John Wiley & Sons (2003)

LC director field schematic courtesy of R.D. Kamien

Boundary effects on defects – topology

System boundary geometry/topology can necessitate defects

 $K_{Gauss} = 1/R_1R_2$ Gaussian curvature of a surface, local geometry

Gauss-Bonnet theorem – relate local geometry to global geometry/topology

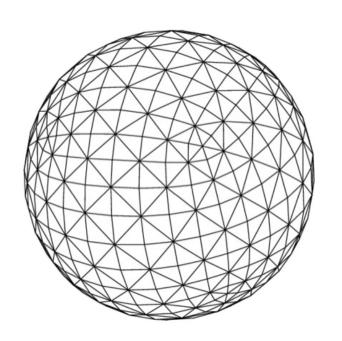
Consider a triangulation of an arbitrary surface:

$$2\pi V = \pi F + \iint_S K_{Gauss} \, dS$$

$$3F = 2E$$

$$V - E + F = \chi = \frac{1}{2\pi} \oiint_S K_{Gauss} dS$$

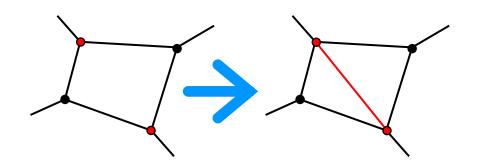
Euler characteristic

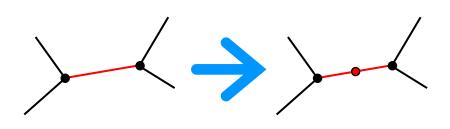


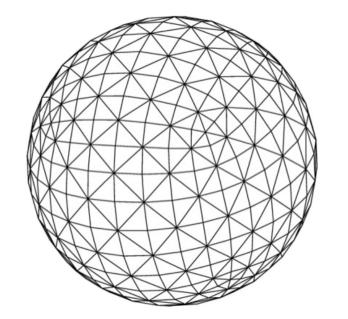
R. Montenegro, et al., Proc. 15th International Meshing Roundtable, (2006)

Boundary effects on defects - topology

System boundary geometry/topology can necessitate defects







$$V - E + F = \chi = \frac{1}{2\pi} \oiint_S K_{Gauss} dS$$

Euler characteristic is topologically invariant

 $\chi = 2$ for the sphere

Boundary effects on defects - topology

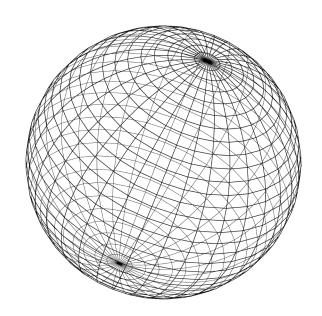
System boundary geometry/topology can necessitate defects

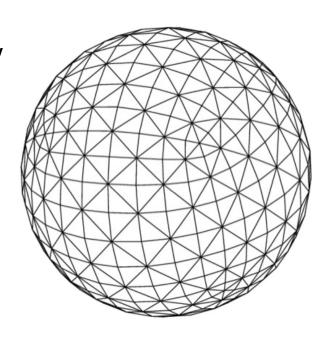
Anything ordered on a surface obeys Poincaré-Hopf theorem

$$\sum_{i} m_i = \chi$$

total topological charge

Holds for liquid crystals with planar anchoring





 $\chi = 2$ for the sphere

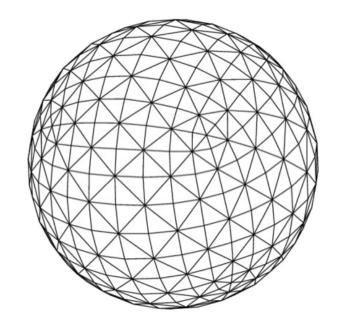
Boundary effects on defects - topology

System boundary geometry/topology can necessitate defects

For homeotropic (perpendicular) anchoring to a surface, must consider full 3D field

3D ordering obeys Gauss theorem

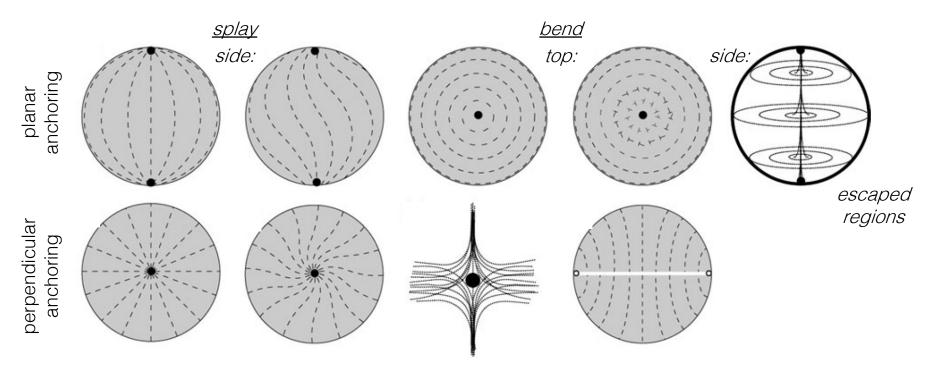
$$\sum_i m_i = 1/2\chi$$
 total topological charge



 $\chi = 2$ for the sphere

Nematics in spheres

Poincaré-Hopf – total index 2 for spherical topology with surface ordering



Gauss -

with perpendicular boundary conditions total index = $\frac{1}{2}\chi$ = 1 for sphere (ordering in volume)

D.L. Stein, *Phys. Rev. A* (1979), **19**:1708

Liquid crystals

Day 1: Displays and droplets

Optical properties

Order: elasticity & defects

LCDs

Research highlights

Day 2: Colloidal liquid crystals

Hard rods - Zwanzig model (2D)

Onsager theory & other interactions

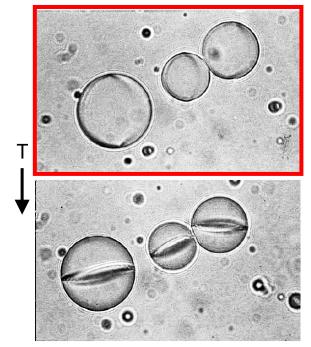
Colloidal liquid crystals in biology

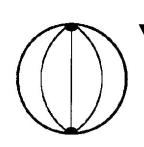
Research highlights

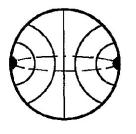
Nematic droplets

Topological dynamics of defects in nematic spherical droplets suspended in a glycerinlecithin matrix. Temperature increases from top-down, left to right. Bright field images.

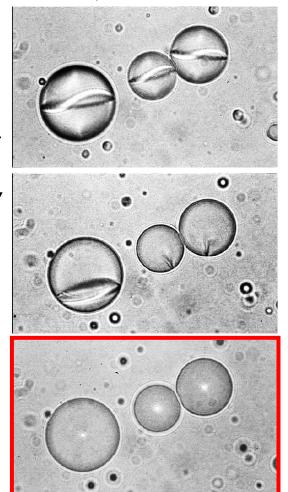
planar anchoring

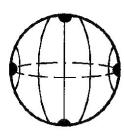


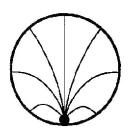


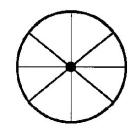


red = equilibrium

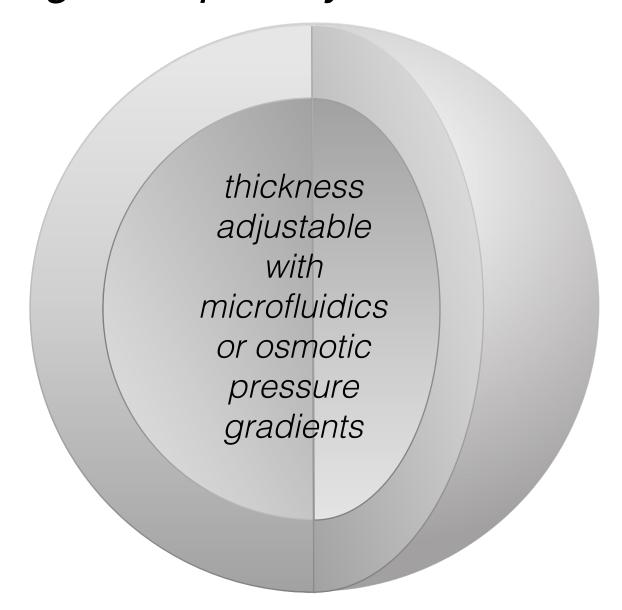








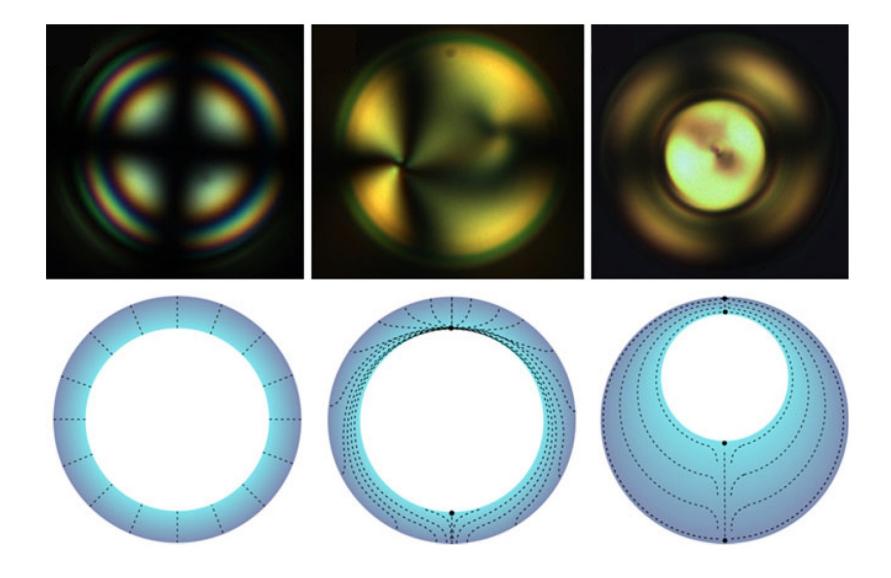
Controlling the liquid crystal environment



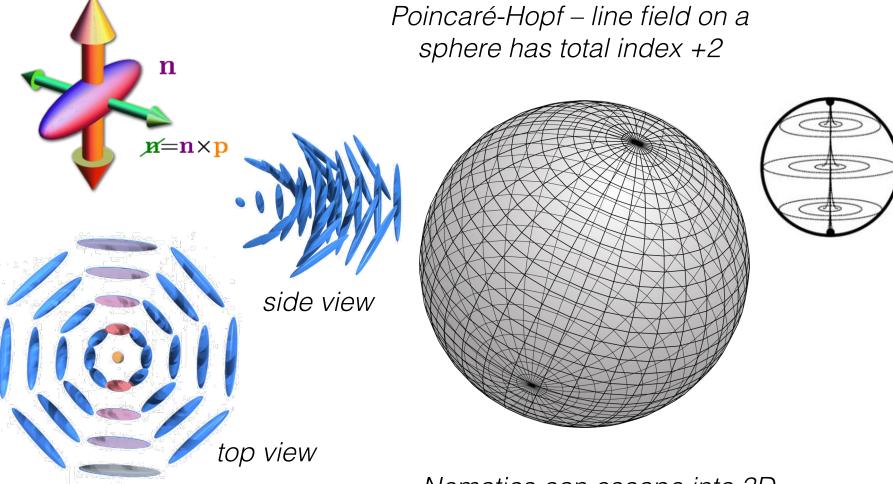
Small molecule liquid crystal in shells

DOI: 10.1103/ PhysRevX. 7.041029

Nematic shells



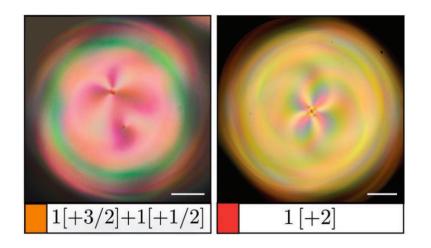
Cholesterics are more complex

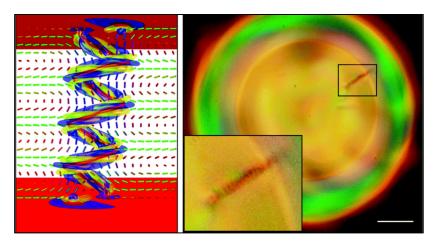


``baby'' skyrmion – λ^{+1}

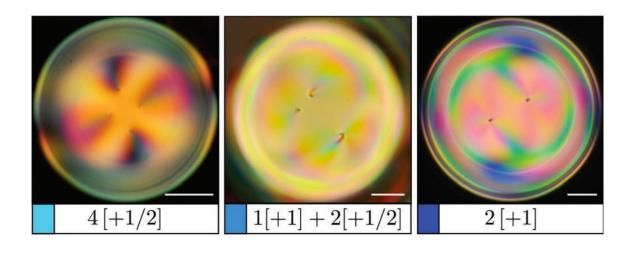
Nematics can escape into 3D
Cholesterics cannot escape
There must be a defect in \boldsymbol{n} or in \boldsymbol{p}

Planar cholesteric shells



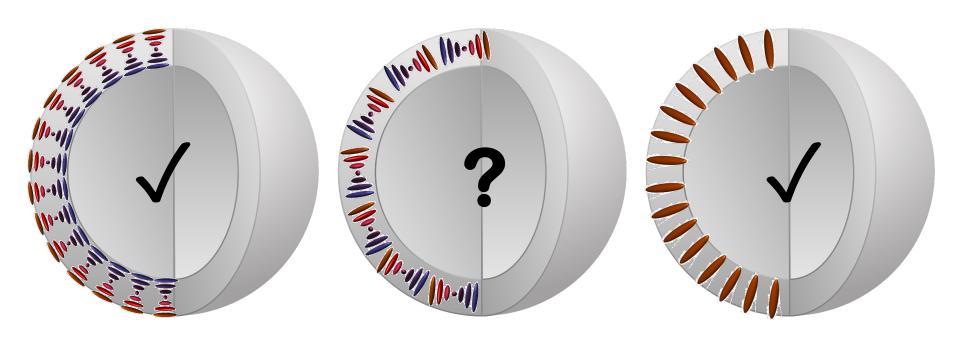


Scale bars are 20 µm.



Topological defects in cholesteric liquid crystal shells. A Darmon, M Benzaquen, S Čopar, O Dauchot, T Lopez-Leon. Soft Matter 12: 9280-9288 (2016)

Cholesterics in shells



planar anchoring weak perpendicular anchoring strong perpendicular anchoring

Simulations setup – Landau-de Gennes model

Energy of the system:

Q is the tensor order parameter S is the scalar order parameter The director is the eigenvector of Q. S₀ is preferred eigenvalue of Q.

$$f = f_{\text{pot.}}[\boldsymbol{Q}] + f_{\text{grad.}}[\nabla \boldsymbol{Q}, \boldsymbol{Q}] + f_{\text{surf.}}[\boldsymbol{Q}|_S]$$

Potential energy – of the system, with A, B, and C being the material constants

Gradient energy –
corresponds to the energy
corresponding to specific
deformations, can be rewritten as
the Frank Free Energy

Surface energy – or the anchoring energy, which is equal to the energy from planar degenerate anchoring plus homeotropic anchoring

$$f_{\text{pot.}} = \frac{A}{2} \operatorname{tr} \mathbf{Q}^2 + \frac{B}{3} \operatorname{tr} \mathbf{Q}^3 + \frac{C}{4} (\operatorname{tr} \mathbf{Q}^2)^2$$

$$f_{\text{grad}} = \frac{L_1}{2} \left[\nabla \times \mathbf{Q} + 2q_0 \mathbf{Q} \right]^2 + \frac{L_2}{2} (\nabla \cdot \mathbf{Q})^2$$

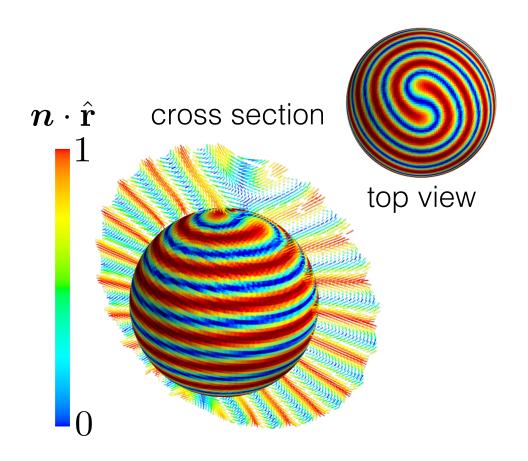
$$f_{\text{surf.}} = f_{\text{deg.}} + f_{\text{hom.}}$$

Projection operator:
$$P = I - v$$
 $\int_{S} \mathrm{d}A \, \mathrm{tr} \left[oldsymbol{Q} - rac{3S_0}{2} \left(oldsymbol{
u} - rac{oldsymbol{I}}{3}
ight)
ight]^2$

matrix of surface normals

$$f_{\text{deg.}} = \int_{S} dA \left\{ W_1 \operatorname{tr} \left[(\boldsymbol{Q} + S_0 \boldsymbol{I}/2 - \boldsymbol{P} (\boldsymbol{Q} + S_0 \boldsymbol{I}/2) \boldsymbol{P})^2 \right] + W_2 \left[\operatorname{tr} (\boldsymbol{Q} + S_0 \boldsymbol{I}/2)^2 - (3S_0/2)^2 \right]^2 \right\}$$

Cholesteric stripes – simulations



No director defects

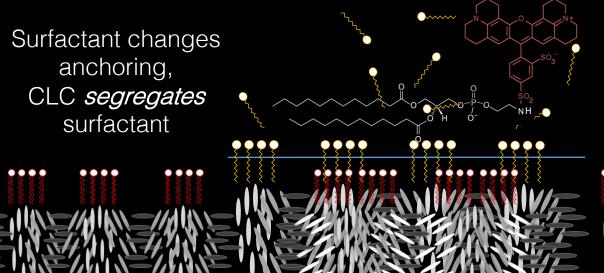
Pitch defects
satisfy the spherical
topology

published in PRX

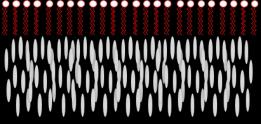
DOI: 10.1103/PhysRevX.7.041029

Changing anchoring with surfactant

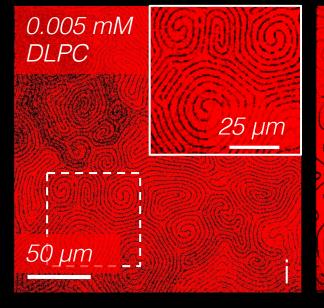
DOI: 10.1103/ PhysRevX. 7.041029

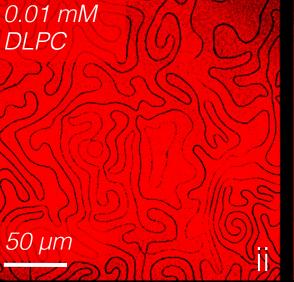


adaptive anchoring

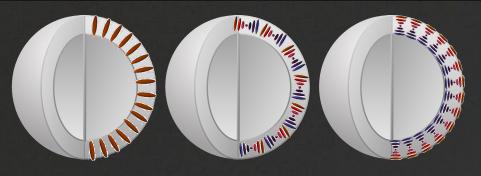


Flat cholesteric film: Fluorescently labeled lipid

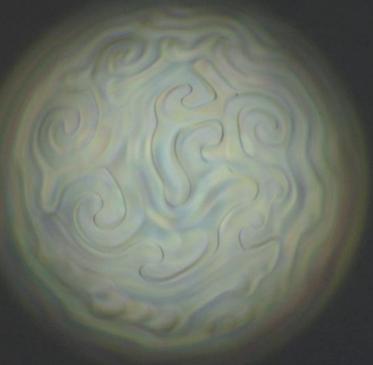




0.05 mM DLPC



DOI: 10.1103/ PhysRevX. 7.041029

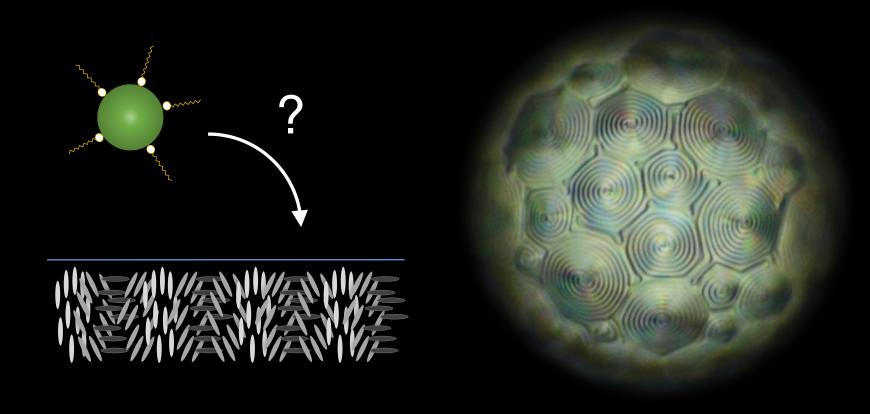


100 µm

0 sec

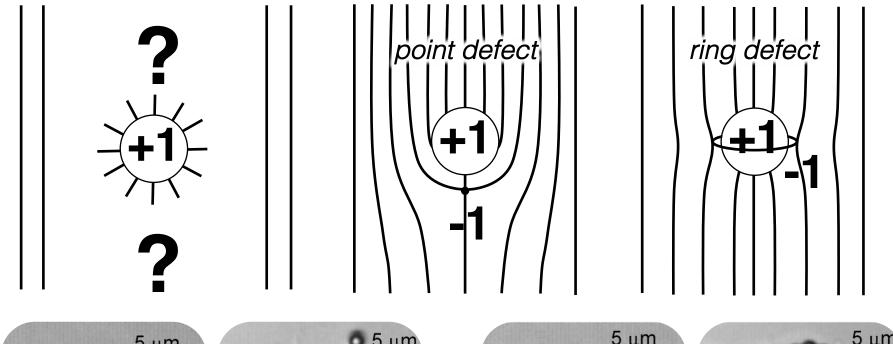
Nanoparticle ordering in cholesterics

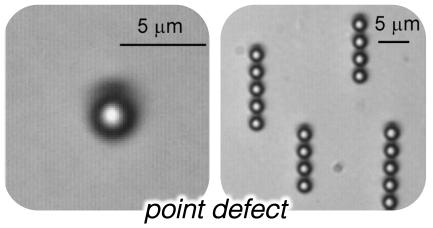
DOI: 10.1126/ SciAdv. aat8597

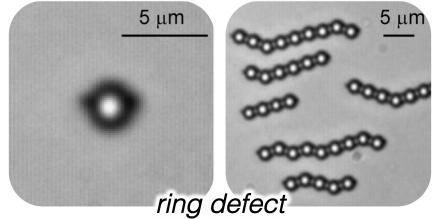


elastic fluids for directed self-assembly

Defects from particles in liquid crystals





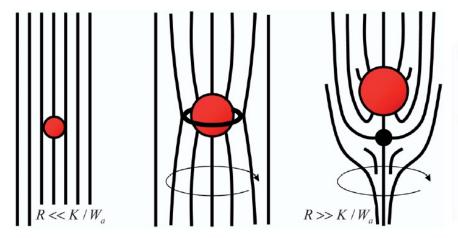


Liquid crystal assembles colloids from elastic distortions

Effect of size and shape

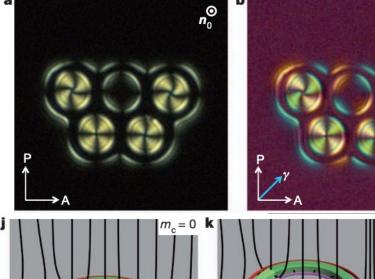
Colloid size and shape

$$f_{\rm anch} = \frac{1}{2}W_{\rm a}\sin^2(\theta - \theta_0)$$



Lavrentovich, O. D. (2014). Transport of particles in liquid crystals. Soft Matter, 10(9), 1264-1283.

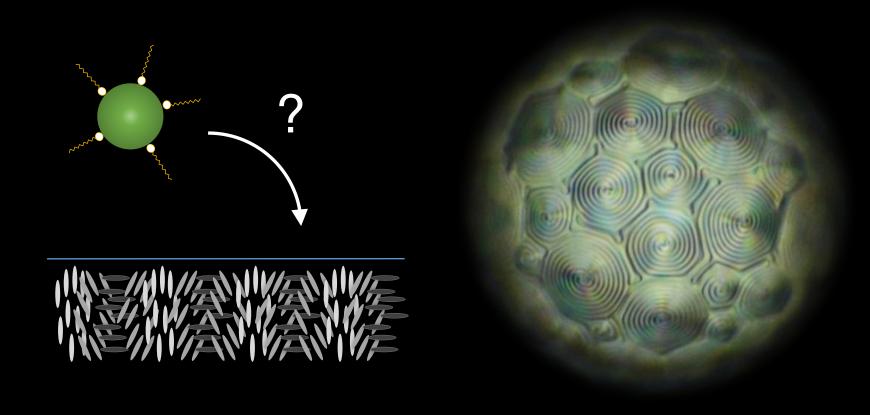
Beller, D. A., Gharbi, M. A., & Liu, I. B. (2015). Shape-controlled orientation and assembly of colloids with sharp edges in nematic liquid crystals. Soft Matter, 11(6), 1078-1086.



Senyuk, B., Liu, Q., He, S., Kamien, R. D., Kusner, R. B., Lubensky, T. C., & Smalyukh, I. I. (2013). Topological colloids. Nature, 493(7431), 200-205.

Nanoparticle ordering in cholesterics

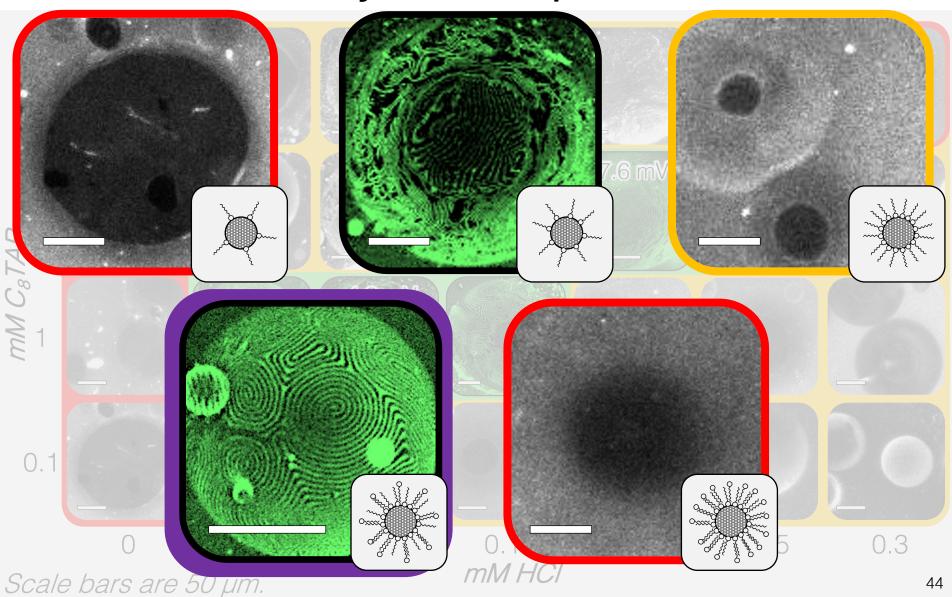
DOI: 10.1126/ SciAdv. aat8597



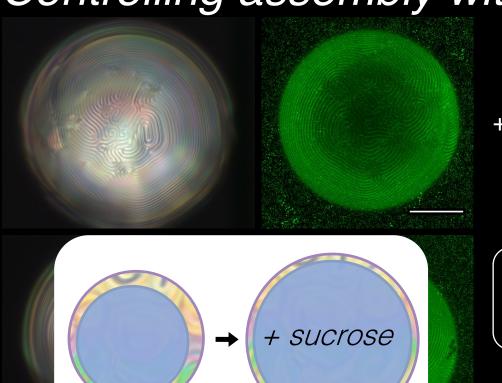
elastic fluids for directed self-assembly

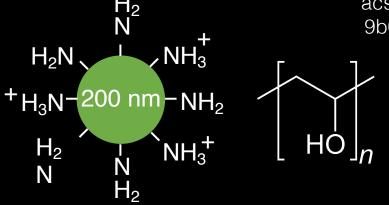
C₈TAB and 30 nm silica Particle chemistry sweet spot

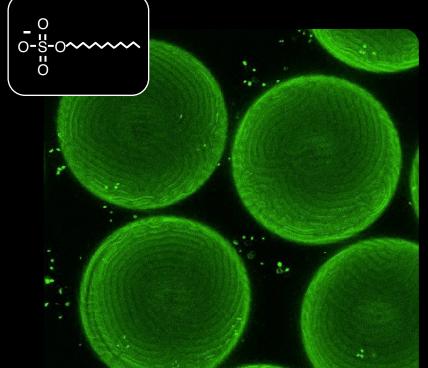
DOI: 10.1126/ SciAdv. aat8597



Controlling assembly with geometry







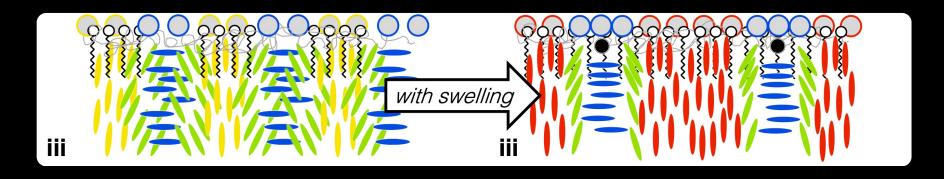
With swelling

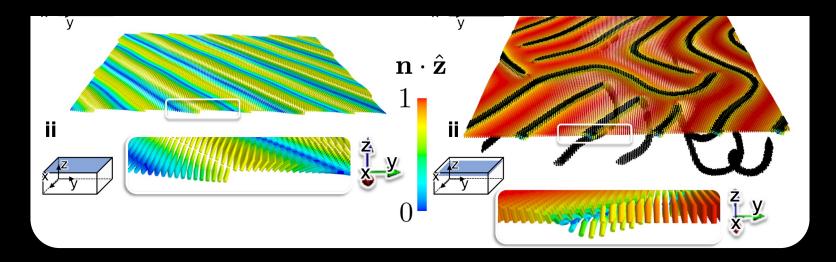
Scale bars are 50 µm.

45

Mechanism for ordering transition

DOI: 10.1021/ acsnano. 9b09441

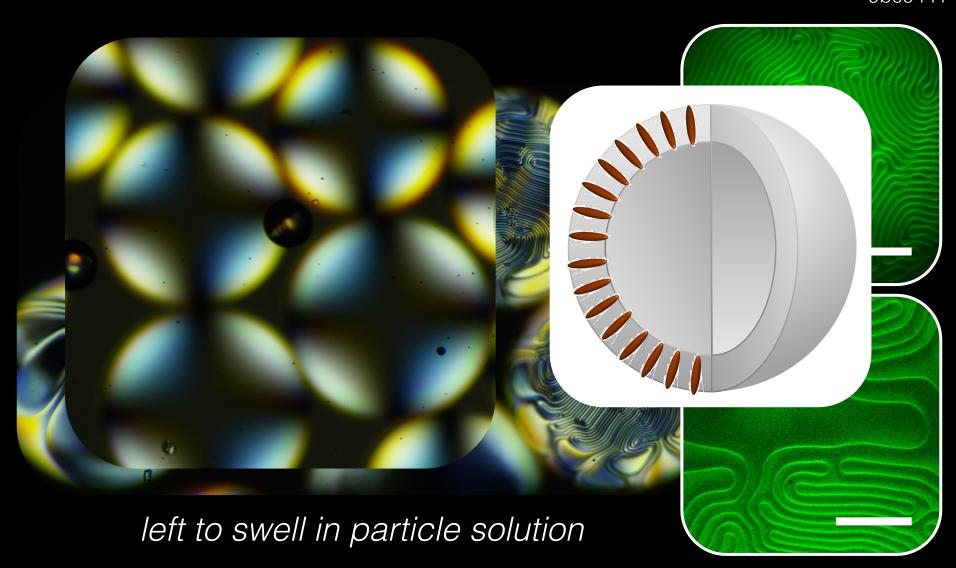




swelling changes energy landscape, introduces defects particles get pushed into and stabilize defects

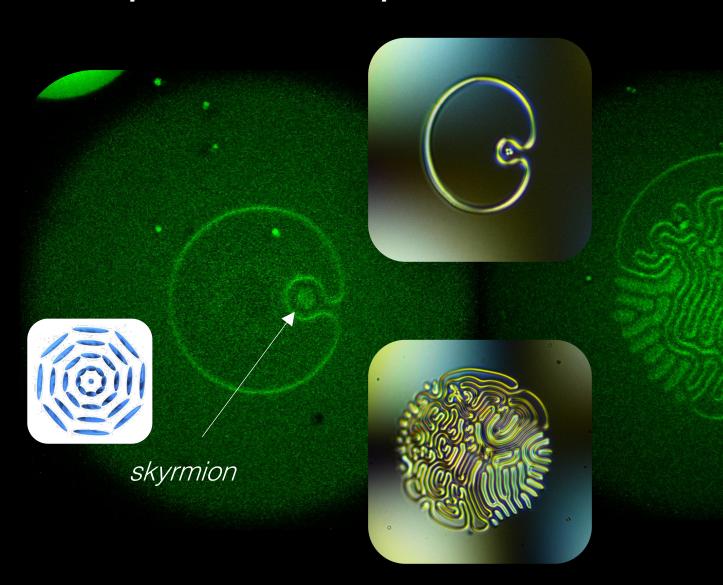
Nanoparticles <u>stabilize</u> defects

DOI: 10.1021/ acsnano. 9b09441



Nanoparticles map out defects

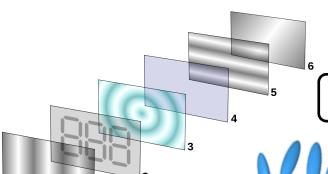
DOI: 10.1021/ acsnano. 9b09441



reduced outer particle concentration

Relevance to Tech

optical & electronic properties

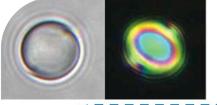


Liquid Crystals <

Nanoparticles

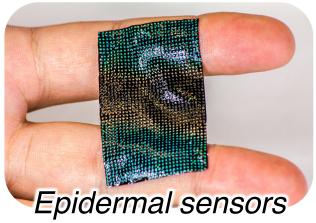
elastic, dielectric material

reconfigurable & responsive

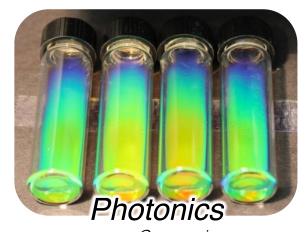


LCDs 1

Abbott group, Cornell

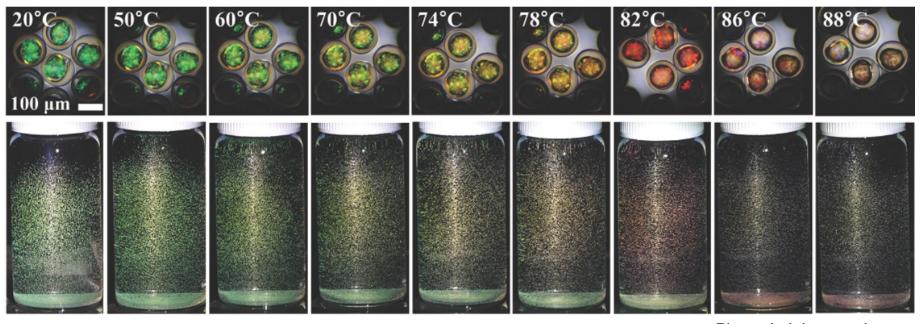


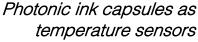
Rogers group, Northwestern

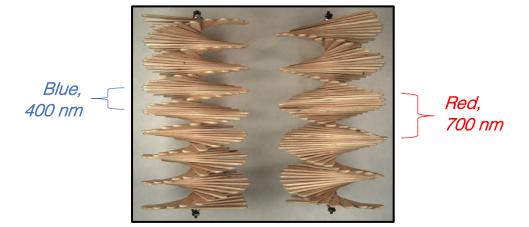


Applications of small molecule cholesterics

Sensors: macroscopic difference with microscopic change







S.S. Lee, B. Kim, S.K. Kim, J.C. Won, Y.H. Kim, S-H. Kim, *Advanced Materials* **27** (2014): 627-633

Liquid crystals



Day 1: Displays and droplets

Optical properties

Order: elasticity & defects

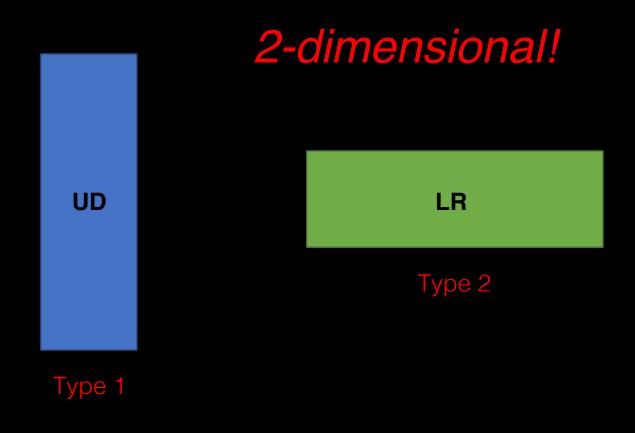
LCDs

Research highlights

Day 2: Colloidal liquid crystals

Hard rods - Zwanzig model (2D)
Onsager theory & other interactions
Colloidal liquid crystals in biology
Research highlights

Special case of depletion



Let's write it out together...

Partition function and free energy

$$Z = e^{-F/k_B T} = \sum e^{-E/k_B T} \qquad F = -k_B T \ln Z$$

Free energy of an ideal gas

$$\frac{F}{k_B T} = N \ln(n\lambda_T^3) \qquad \qquad n = \frac{N}{V}$$

Getting pressure from the free energy – recover the ideal gas law!

$$p = -\frac{\partial F}{\partial V}|_{N,T} = -\frac{\partial n}{\partial V}|_{N,T} \frac{\partial F}{\partial n}|_{N,T} = \frac{N}{V^2} \frac{\partial F}{\partial n}|_{N,T} = \frac{N}{V^2} \frac{Nk_BT}{n} = k_BTn$$

Corrections to ideal gas: Virial Expansion for 1-component

$$\frac{p}{k_B T} = n + B_2 n^2 + \dots$$

We will only keep up to the second virial coefficient...

Corrections to ideal gas: Virial Expansion for 1-component

$$\frac{p}{k_B T} = n + B_2 n^2 + \dots$$
 $B_2 = \frac{1}{2} V_{\text{exc}}$

is related to the excluded volume for indistinguishable particles...!

Can see this from chemical potential, considering virial expansion...

$$\mu = \frac{\partial F}{\partial N} \qquad \frac{F}{k_B T} = N \ln(n\lambda_T^3) + \frac{N^2}{V} B_2 + \dots \qquad \mu = \mu_{\text{ideal}} + nV_{\text{exc}}$$
$$n = \frac{N}{V}$$

Virial Expansion for 2-components

$$\frac{p}{k_B T} = n_1 + n_2 + B_{1,1} n_1 n_2 + B_{2,0} n_1^2 + B_{0,2} n_2^2 + \dots$$

Virial Expansion for 2-components

$$\frac{p}{k_B T} = n_1 + n_2 + B_{1,1} n_1 n_2 + B_{2,0} n_1^2 + B_{0,2} n_2^2 + \dots$$

Let
$$f = \frac{N_1}{N_1 + N_2}$$
 and $1 - f = \frac{N_2}{N_1 + N_2}$

$$p = \frac{N}{V^2} \frac{\partial F}{\partial n} |_{N,T,f}$$

constant f, same as constant N₁ & N₂

Rewrite this in terms of f

We will minimize with respect to f later...

$$n_1 = fn$$
 $N_1 = fN$
 $n_2 = (1 - f)n$ $N_2 = (1 - f)N$

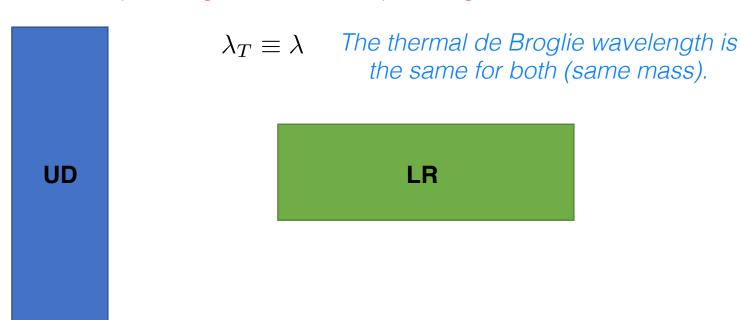
After some massaging...

$$\frac{p}{k_B T} = n + n^2 [B_{2,0} f^2 + B_{1,1} f(1-f) + B_{0,2} (1-f)^2] + \dots$$

Let's also get the free energy (to be minimized...) more massaging...

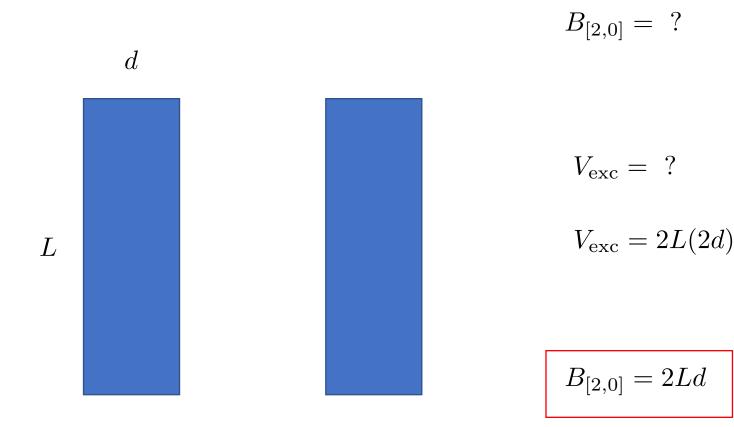
$$\frac{F}{k_B T N} = f \ln f + (1 - f) \ln(1 - f) + \ln n$$
$$+ f \ln \lambda_1^3 + (1 - f) \ln \lambda_2^3$$
$$+ n[B_{2,0} f^2 + B_{1,1} f (1 - f) + B_{0,2} (1 - f)^2] + \dots$$

Consider 2 species: rods pointing NS and rods pointing EW



Let's determine the second virial coefficient(s)...

$$B_2 = \frac{1}{2}V_{\text{exc}}$$



Let's determine the second virial coefficient(s)...

$$B_2 = \frac{1}{2}V_{\text{exc}}$$

$$B_{[0,2]} = ?$$

L

d

$$V_{\rm exc} = ?$$

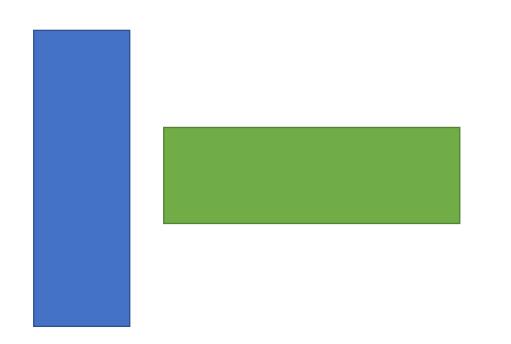
$$V_{\rm exc} = 2L(2d)$$

$$B_{[0,2]} = 2Ld$$

Let's determine the second virial coefficient(s)...

$$B_2 = \frac{1}{2}V_{\rm exc}$$

$$B_{[1,1]} = ?$$



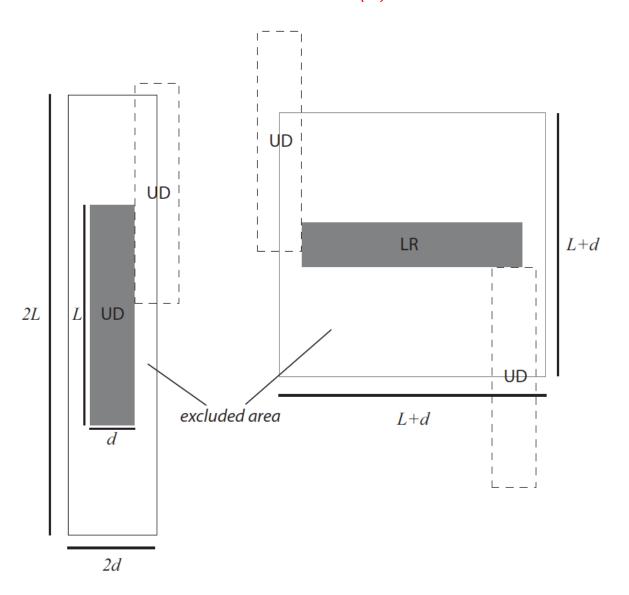
$$V_{\rm exc} = ?$$

$$V_{\rm exc} = (L+d)^2$$

$$B_{[1,1]} = (L+d)^2$$

Not divided by 1/2 because the two are distinguishable!

Let's determine the second virial coefficient(s)...



Let's simplify our star equation a little and plug in the B_2 's

$$\frac{F}{k_BTN} = f \ln f + (1-f) \ln (1-f) + \ln n \qquad \lambda_T \equiv \lambda$$

$$+ f \ln \lambda_1^3 + (1-f) \ln \lambda_2^3 \qquad = \ln \lambda^3$$

$$+ n[B_{2,0}f^2 + B_{1,1}f(1-f) + B_{0,2}(1-f)^2] + \dots$$

$$= \ln n\lambda^3$$

$$\dots \text{ which is independent of } f, \text{ so } I$$

$$\frac{F}{k_BTN} = f \ln f + (1-f) \ln (1-f) \qquad \text{will drop it since we will minimize soon} \dots$$

$$+ n\{2Ld[f^2 + (1-f)^2] + (L+d)^2f(1-f)\} + \dots$$

Rewrite this last term using
$$(f+1-f)^2=1=f^2+(1-f)^2+2f(1-f)$$

$$\frac{F}{k_B T N} = f \ln f + (1 - f) \ln(1 - f) + n[2Ld - 4Ldf(1 - f) + (L + d)^2 f(1 - f)] + \dots$$

... drop terms independent of f again...

After all this our star equation becomes:

$$\frac{F}{k_B T N} = \frac{f \ln f + (1 - f) \ln f}{h + n[(L - d)^2 f (1 - f)] + \dots}$$

1. Entropy of mixing! (E_{mix})

2. interaction term

1. Minimize mixing term

$$0 = \frac{\partial}{\partial f}(E_{\text{mix}}) = 1 + \ln f - 1 - \ln(1 - f) = \ln\left(\frac{f}{1 - f}\right) \quad \text{perfectly mixed!}$$

$$f = 1 - f$$
 $f = \frac{1}{2}$

$$f = \frac{1}{2}$$

2. Minimize interaction term

$$0 = \frac{\partial}{\partial f} [f(1-f)] = 1 - 2f$$

$$f = \frac{1}{2}$$

 $f = \frac{1}{2}$ Question: Is this a minimum?

$$\frac{\partial^2}{\partial^2 f} E_{\text{mix}} = \frac{1}{f} + \frac{1}{1+f} > 0$$
 $\frac{\partial^2}{\partial^2 f} [f(1-f)] = -2 < 0$

$$\frac{\partial}{\partial^2 f} [f(1-f)] = -2 < 0$$

minimum

maximum!!!

We have ourselves a classic battle between two terms!

$$\frac{F}{k_B T N} = \frac{f \ln f + (1 - f) \ln f}{h + n[(L - d)^2 f (1 - f)] + \dots}$$

1. Entropy of mixing! (E_{mix})

2. interaction term

What happens when L = d?

The interaction term vanishes, and everything is well-mixed.

You can control n, which is the density/concentration.

By changing the concentration, you go from mixed to aligned.

This is a phase transition!

Mini Landau theory...

Let's rewrite f in terms of a scalar order parameter S.

$$f = \frac{1}{2} + S$$
 When $S = 0$, everything is randomly oriented.

$$f(1-f) = \frac{1}{4} - S^2$$

$$E_{\text{mix}} = f \ln f + (1 - f) \ln(1 - f)$$
$$= (\frac{1}{2} + S) \ln(\frac{1}{2} + S) + (\frac{1}{2} - S) \ln(\frac{1}{2} - S)$$

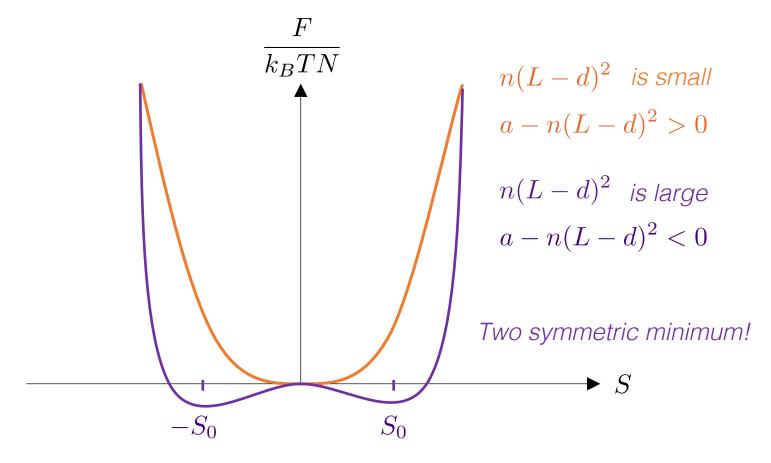
Note that $S \rightarrow -S$ Expand in powers of S^2

$$E_{\text{mix}} = -\ln 2 + aS^2 + bS^4 + cS^6 + \dots$$

Let's plug this into the free energy and consider only the leading powers...

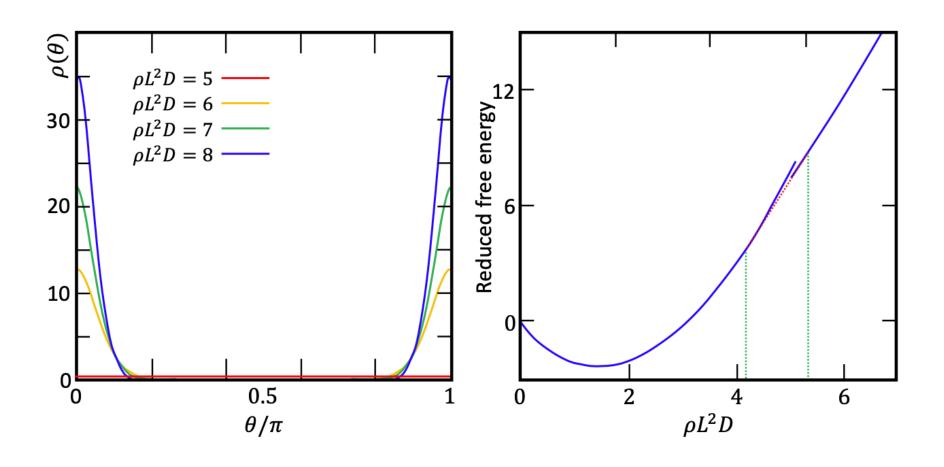
Mini Landau theory...

$$\frac{F}{k_B T N} = -\ln 2 + aS^2 + n(L - d)^2 (1/4 - S^2) + bS^4 + \dots$$



Symmetry breaking → a classic signature of a phase transition.

Onsager theory, 3D & plotted L>>d



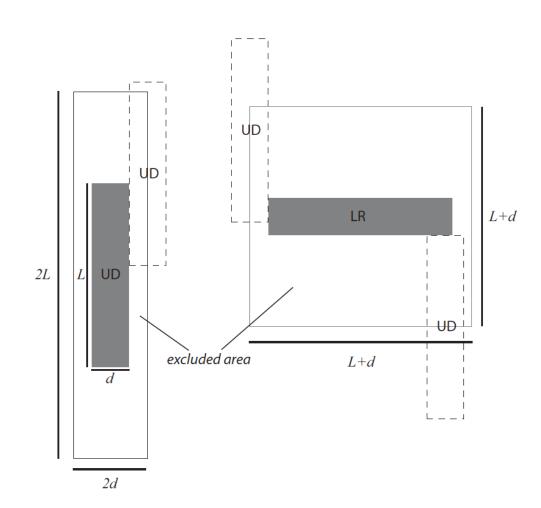
Colloids as Liquid Crystals

Overview

Assembly into liquid crystal phases due to entropic interactions, excluded volume

Reducing excluded volume gives more freedom of motion, increases entropy.

Phase transitions occur which minimize excluded volume.



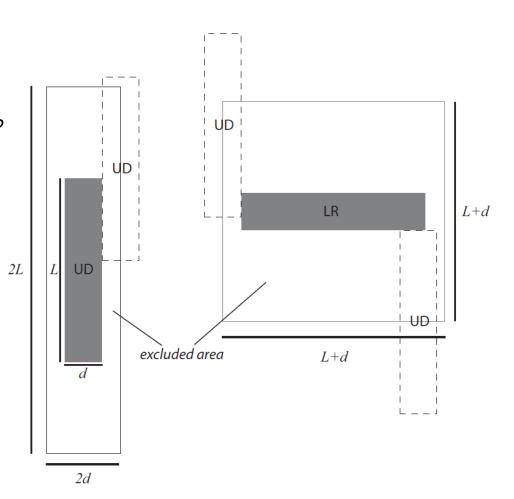
Colloids as Liquid Crystals

Some Open Questions (not exhaustive)

Role of molecular shape and heterogeneity in stabilizing phases? Which phases and why?

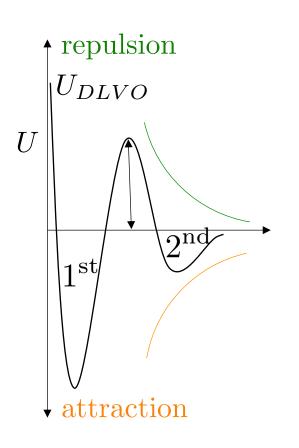
Diffusion behavior of individual components in phases?

Controlling assembly in biological, colloidal liquid crystals



Beyond entropy...

Controlling interparticle interactions



Considerations...

Steric repulsion (adsorbed polymer)

Electrostatic interactions (solvent, salts)

Depletion effects (nonadsorbing polymer)

Liquid crystals

Day 1: Displays and droplets

Optical properties

Order: elasticity & defects

LCDs

Research highlights

Day 2: Colloidal liquid crystals

Hard rods - Zwanzig model (2D)

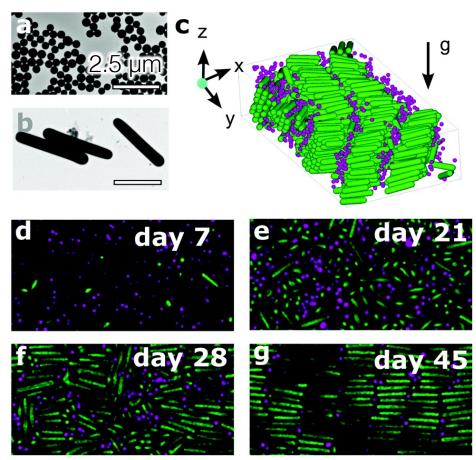
Onsager theory & other interactions

Colloidal liquid crystals in biology

Research highlights

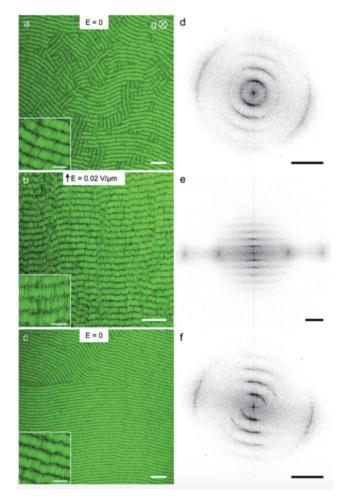
Experimental methods...

Sedimentation



Bakker, H.E., Dussi, S., Droste, B.L., Besseling, T.H., Kennedy, C.L., Wiegant, E.I., Liu, B., Imhof, A., Dijkstra, M. and van Blaaderen, A., 2016. Soft Matter, 12(45), pp.9238-9245.

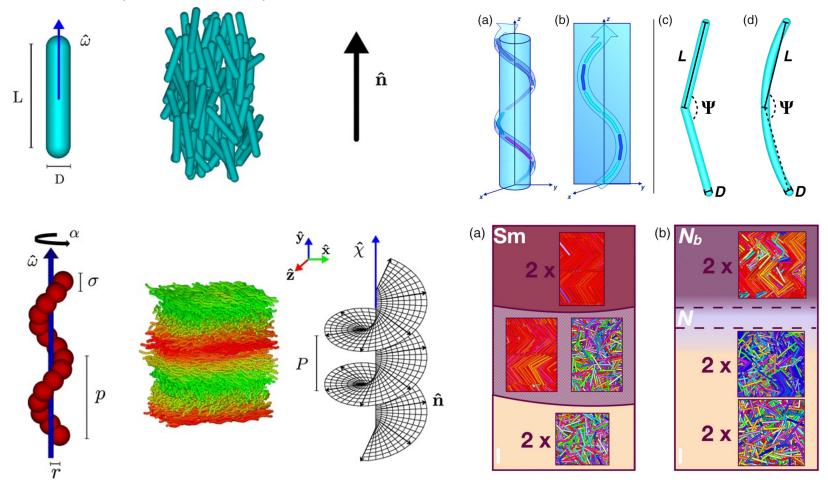
External fields



Kuijk, A., Troppenz, T., Filion, L., Imhof, A., Van Roij, R., Dijkstra, M., & Van Blaaderen, A. (2014). Effect of external electric fields on the phase behavior of colloidal silica rods. Soft Matter, 10(33), 6249-6255.

Phase Behavior

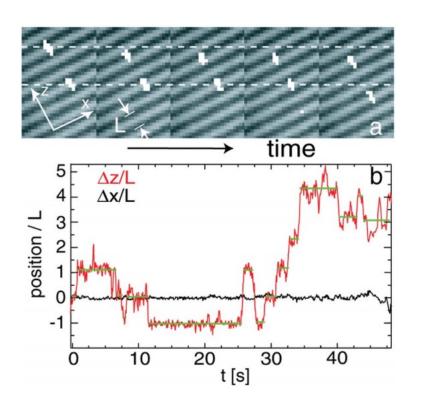
Phases from particle shape

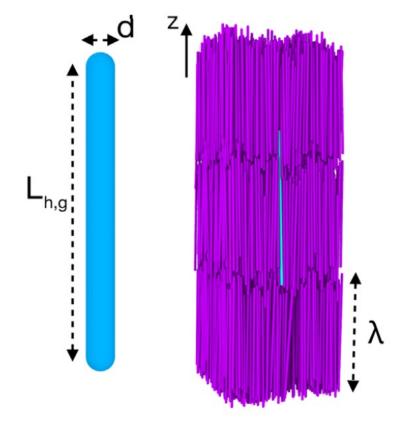


Dussi, S., Belli, S., Van Roij, R., & Dijkstra, M. (2015). Cholesterics of colloidal helices: Predicting the macroscopic pitch from the particle shape and thermodynamic state. The Journal of chemical physics, 142(7), 074905.

Chiappini, M., Drwenski, T., Van Roij, R., & Dijkstra, M. (2019). Biaxial, Twist-bend, and Splay-bend Nematic Phases of Banana-shaped Particles Revealed by Lifting the "Smectic Blanket". Physical review letters, 123(6), 068001.

Diffusion behavior



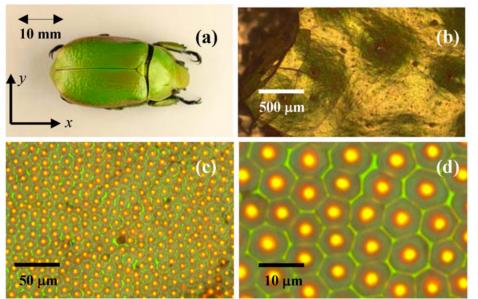


Lettinga, M. P., & Grelet, E. (2007). Self-diffusion of rodlike viruses through smectic layers. Physical review letters, 99(19), 197802.

Chiappini, M., Grelet, E., & Dijkstra, M. (2020). Speeding up Dynamics by Tuning the Noncommensurate Size of Rodlike Particles in a Smectic Phase. Physical Review Letters, 124(8), 087801.

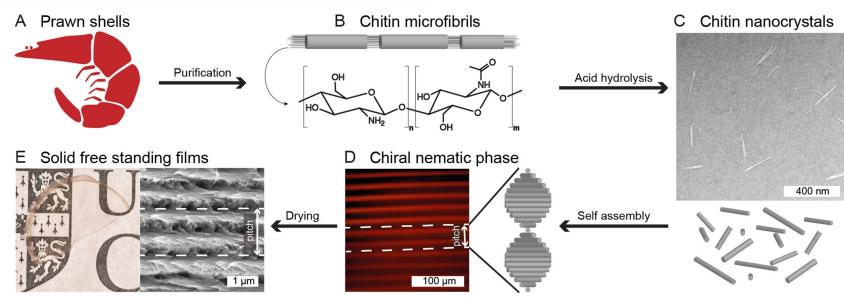
Biologically Sourced Colloids

Chitin

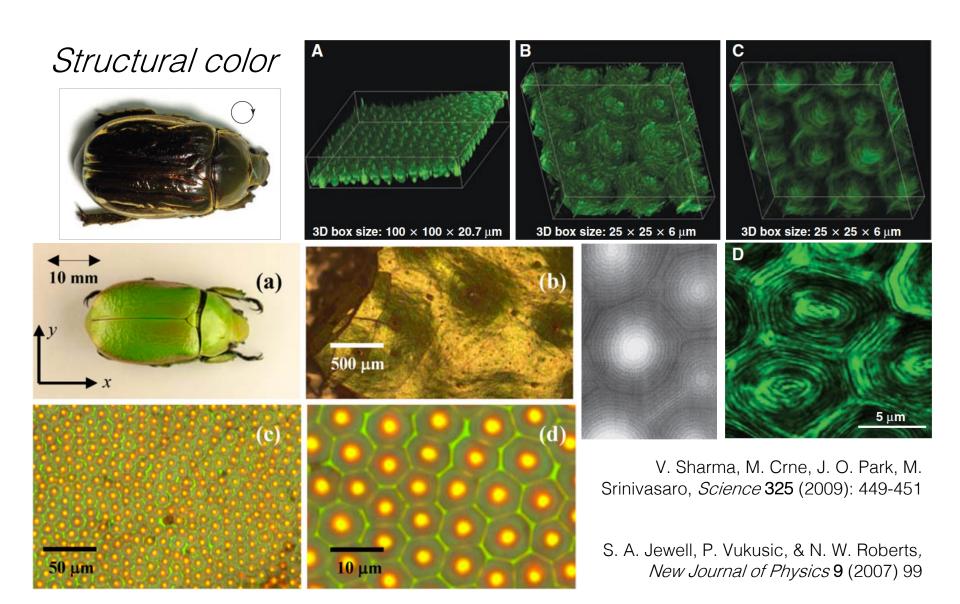


V. Sharma, M. Crne, J. O. Park, M. Srinivasaro, *Science* **325** (2009): 449-451

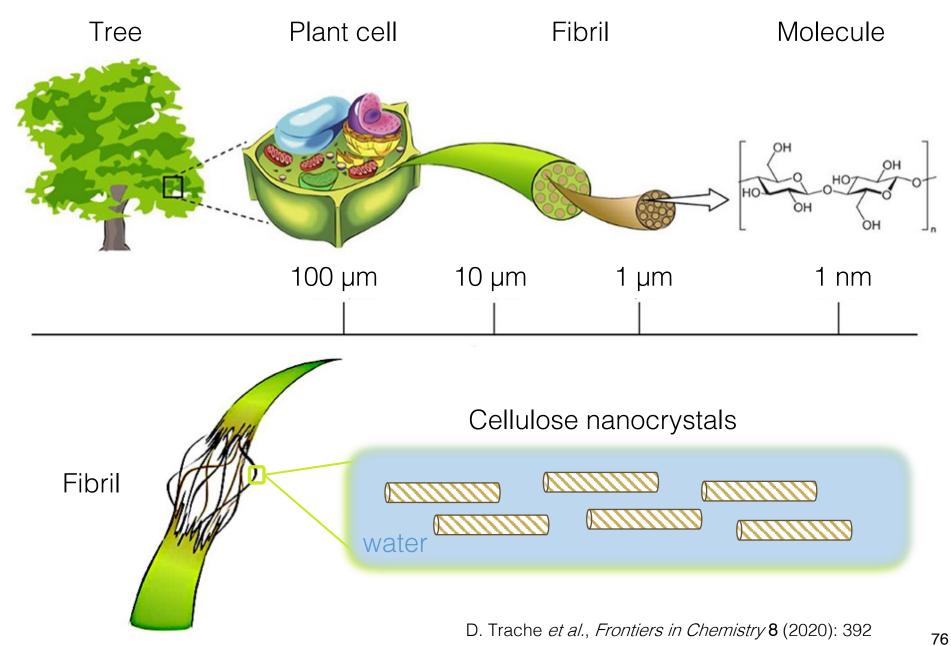
Narkevicius, A., Steiner, L. M., Parker, R. M., Ogawa, Y., Frka-Petesic, B., & Vignolini, S. (2019). Biomacromolecules, 20(7), 2830-2838.



Cholesterics in the natural world



Cellulose nanocrystals (CNCs)



Forming a CNC film

$$t = 0h/48h$$

 $100~\mu m$

Forming a CNC film

$$t = 20h/48h$$

100 μm

Forming a CNC film

$$t = 28h/48h$$

100 μm

Liquid crystals

Day 1: Displays and droplets

Optical properties

Order: elasticity & defects

LCDs

Research highlights

Day 2: Colloidal liquid crystals

Hard rods - Zwanzig model (2D)
Onsager theory & other interactions
Colloidal liquid crystals in biology
Research highlights